наверх
Вход на сайт Вход на сайт
Вход Регистрация Забыли пароль?  

Ваш логин
Пароль
 
Закрыть
Принимаю условия соглашения и даю своё согласие на обработку персональных данных и cookies.
 


Аватар Дмитрий Горчаков
карма
8
 
  метки записей:
 
2020
Январь
пн вт ср чт пт сб вс
  12345
6789101112
13141516171819
20212223242526
2728293031  
 
  ответы: RSS-лента последних ответов
И всё же оставляли бы и
перерабатывали они все
эти радиоактивные
отходы у себя в
Германии и других
странах. У нас с этим
наверняка своих проблем
с изб...
Всё очень длинно и
запутано. Обыватель
может задать резонный
вопрос: если все эти
урановые хвосты
настолько полезны,
почему же их авторы
сами не замор...
Не уверен, мы его
покупаем за деньги для
переработки, типа
Понятно, что говно,
оставшееся после
"переработки
стратегического
ресурса" никто
назад в Германию не
повезет...
Все пьют алкоголь, хотя
он крайне вреден, Но
напиток пепси-кола
чрезвычайно
полезен... Можно темпы
обсуждать, но и по ним
у Росатома ес...
Если я верно помню, то
за утилизацию нам еще и
доплачивают, нет? Так,
что это не
"условно
бесплатный", а
"с доплатой".
Нам на 70 лет
переработки хватит
своего говнасырья,
причем условно
бесплатного -
логично? Другой вопрос,
он перерабатывается на
100%? Что остае...
Кто сказал что не
перерабатываем?
Перерабатываем. И свой
и чужой и обогащаем, и
переводим в
закись-окись урана в
Зеленогорске (по 10 тыс
т. в год). Мо...
Прочитал доводи и
противников и
сторонников... Ответьте
на один вопрос: в
России сейчас накоплено
порядка 700 тыс. тонн
гексафторида урана.
Какого хер...
Так и не добралась до
"Аэропорта".
Что-то другое у Хейли
читала, не вспомню
так...
   
 
Вторник, 24 Декабрь 2019
16:28
Разбираемся во ввозе урановых хвостов в Россию. Часть 1. История и технологии обогащения.    
Уже почти два месяца Гринпис и экологи-активисты ведут кампанию по запрету ввоза в Россию обедненного гексафторида урана (ОГФУ) из Германии. Я уже высказывался об этой истории в самом ее начале: В Россию начали завозить радиоактивные отходы из Европы? Разбираемся. За прошедшее время пришлось несколько раз выступать в СМИ на эту тему (тут вот подборка этих записей), поучаствовать в публичном обсуждении в Новоуральске, а также в очной публичной дискуссии с одним из главных оппонентов ввоза. А на прошлой неделе я побывал в пресс-туре и на самом комбинате УЭХК в Новоуральске, куда и везут ОГФУ.


Газовые центрифуги на УЭХК - крупнейшем в мире комбинате по обогащению урана

Так что за это время я постарался не только глубже вникнуть в матчасть вопроса, а она огромна и интересна, и я изучил далеко не все, так постараюсь дополнять материалы по мере углубления, но и успел погрузиться в общественный контекст проблемы. Давайте попробуем разобраться в этом всем по порядку и начнем с исторического обзора технологий обогащения урана.



Вместо введения
Для начала пару слов о ядерной физике. Как известно, уран используется в качестве топлива для атомных станций и начинки для ядерного оружия. Природный уран состоит из нескольких изотопов. Изотопы - это атомы одного химического элемента, отличающиеся массой ядра. Природный уран состоит на 0,711% из изотопа U-235, а на 99,28% из U-238, ну и на 0,01 % из U-234, но о нем сильно позже . Химически они совершенно одинаковы, но ядерные свойства у них разные. Для использования в большинстве атомных реакторов АЭС необходимо увеличить долю урана-235 до 4-5%, а для ядерного оружия и до 90%.

Увеличение в уране доли изотопа уран-235 называют обогащением. Процесс этот не стоит путать с обогащением руды, поскольку тут речь идет не о выделении какого-то химического элемента из пустой породы, например, урана из руды, где его обычно около 1%, а о разделении атомов одного и того же химического элемента. Поэтому этот процесс еще называют процессом разделения изотопов. Понятно, что задачка эта будет посложнее, ведь химические методы тут не работают. Нужно придумать что-то, что учитывает лишь разницу масс ядер, которая для изотопов урана 235 и 238 составляет всего около 1,5%. Непростая задачка.

Зачем нужен гексафторид урана
Существуют разные методы разделения изотопов, но два наиболее производительных и получивших исторически большее распространение (диффузионный и центрифужный), предполагают использование в качестве рабочей среды газа. А единственное легко летучее химическое соединение урана - это его соединение с фтором - гексафторид урана (ГФУ, UF6). При атмосферном давлении и до 56 C это твердое вещество, но при нагревании он переходит из твердого состояния в газ минуя жидкость. К тому же фтор имеет лишь один стабильный изотоп, поэтому отличие молекул UF6 по массе определяется исключительно изотопом урана. При этом его тройная точка (где он в твердом, жидком и газообразном виде одновременно) имеет не очень высокую температуру и давление, т.е. переводить его в разные фазовые состояния не очень сложно, а для промышленного применения это важно.


Фазовая диаграмма гексафторида урана (ГФУ, или UF6). Фото автора, снято на УЭХК.

Чтобы понять место гексафторида урана в атомной энергетике и ядерно-топливном цикле, давайте посмотрим на схему ниже. Она большая, но не пугайтесь. Нам надо отметить лишь 4 пункта в левом верхнем углу и два крайних, на которых гексафторид появляется и исчезает. На самом деле он исчезает еще и в самом левом-верхнем квадрате, при хранении, но об этом позже. При этом надо понимать что сам уран никуда не исчезает, просто переводится из одних химических соединений в другие (из оксидов в фтроиды и обратно). Небольшая часть урана как элемента исчезает лишь в ядерном реакторе после деления и других ядерных реакций.


Схема топливного цикла. Гексафторид урана появляется только для обогащения урана. До и после этой стадии уран присутствует в других химических формах. Источник.

Прежде чем из урана сделают топливо для АЭС, его надо добыть (из шахты, почвы или, как может быть в будущем, из морской воды), затем перевести в форму оксидов, затем отправить на специальные конверсионные комбинаты (например, в Северске или Ангарске), где его уже переведут в форму гексафторида (ГФУ) природного урана. Затем этот ГФУ отправляют на обогатительные комбинаты (в России их четыре - самый крупный в Новоуральске, и 3 в Сибири - в Северске, Ангарске и Зеленогорске), где образуется два продукта - обогащенный гексафторид урана, который направляют на заводы по изготовлению топлива (в Новосибирске и Электростали, или сразу в форме ГФУ за границу зарубежным заказчикам), и обедненный гексафторид урана, который направляют на хранилища при обогатительных комбинатах. Так что гексафторид урана - это тот уран, который еще не был в реакторе. Хотя есть и такие варианты, но встречаются они гораздо реже.

Немного истории технологий обогащения урана
Исторически такая масштабная задачка как промышленное обогащение урана впервые встала перед создателями атомного оружия. Альтернативой была наработка плутония, и ее даже быстрее освоили (о том на чем его нарабатывали я писал ранее). Тогда вопрос надо было решить быстро и любой ценой. Экспериментировали и в США и в СССР с разными методами - и с газовой диффузией, и с электромагнитными методами и с центрифугами. Причем, их комбинировали.

Уран для первой атомной бомбы, сброшенной на Японию, американцы наработали на электромагнитной установке Y-12, где используется принцип различия траекторий ионов разной массы, движущихся в магнитном поле. В СССР аналогичный метод внедряли на установке СУ-20 в городе Лесной (Тогда город Свердловск-45, тоже в Свердловской области). Но этот метод позволял работать лишь с небольшими объемами материала и доводить обогащение с 75% до необходимых 90-94%. А перед этим обогащение проводили на диффузионных машинах. Они были более производительным и пригодным для промышленного обогащения больших объемов урана.


Атомная бомба "Малыш", сброшенная на Хиросиму 6 августа 1945 года, имела в качестве "взрывчатки" 64 кг урана, обогащенного электромагнитным методом и методом газовой диффузии. СССР свою первую урановую бомбу взорвал в 1951, через два года после плутониевой. Источник

Основа диффузионного метода заключается в различии средних скоростей тяжелых и легких молекул при прохождении (диффузии) сквозь пористые тела - мембраны. Это означает, что лёгкие молекулы проходят через поры легче и быстрее, поэтому после мембраны газ получается более обогащенным легкими атомами.


Макет первой газодиффузионной машины в СССР ОК-150, с которой и начался Уральский электрохимический комбинат - УЭХК, но тогда просто завод 813 в закрытом городе Свердловск-44, ныне Новоуральск. Фото из музея УЭХК. Справа компрессор, а вот вертикальный цилиндр слева - как раз блок с сетчатым фильтром, через который и диффундирует гексафторид урана

В разделении изотопов важно понимать пару вещей. Во-первых, каждая отдельная установка проводит обогащение на очень незначительную величину. В газе на выходе лишь немного больше молекул с U-235 по сравнению с тем, что было на входе (на десятые доли процента). Поэтому приходится объединять сотни и тысячи машины в так называемые каскады, через которые газ проходит, постепенно обогащаясь до нужной величины. Первый газодиффузионный завод Д-1 в СССР (№813, будущий УЭХК) имел в 1948 году в своем составе 3000 машин ОК-150.


Каскады диффузионных машин на УЭХК. Фото стендов музея УЭХК.

Во-вторых, это очень энергозатратное удовольствие. И количество машин, и их мощные компрессоры, необходимые для прокачивания газа через фильтры, требовали огромного количества электроэнергии. Комбинат рос, к заводу Д-1 добавлялись заводы Д-2, Д-3 и Д-4. К 1953 году на УЭХК работало около 15 тыс. диффузионных машин, а потребляемая мощность составляла 250 МВт. К 1958-му, с пуском Д-5, потребление выросло до 800 МВт мощности или около 7
млрд кВтч/год. В 1950-е СССР добавил к Уральскому комбинату еще три завода в по обогащению урана в Сибири: Ангарский электролизный химический комбинат (АЭХК, г. Ангарск, Иркутская область), Электрохимический завод (ЭХЗ, г. Зеленогорск, Красноярский край) и Сибирский химический комбинат (СХК, г. Северск, Томская область). К концу 1950-х до 3% всей электроэнергии СССР шло на обогащение урана. В то же время в США, до конца Холодной войны использовавших для атомной гонки и наработки топлива для АЭС (которых у них до сих пор больше чем у кого-либо) наиболее энергозатратную технологию диффузии, на обогащение уходилодо 7% всей электроэнергии.

Это, конечно, создавало проблемы (приходилось строить мощные электростанции, например крупные гидроэлектростанции в Сибири) и отчасти выдавало такие комбинаты. Существует интересная история о том, как в 1958 году по фотографии схемы электросетей Уральского региона, опубликованной в журнале Огонек, аналитики ЦРУ вычислили мощность и расположение комбината УЭХК.


То самое фото из журнала Огонек, по которому ЦРУ (кроме прочих источников) изучало атомную промышленность на Урале. Источник.

В США были построены три газодиффузионных завода - первый в Ок-Ридже (уже закрыт), затем в Портсмуте и в Падьюке. В Англии с 1956 г. заработал газодиффузионный завод в Кэйпенхерсте. Во Франции с 1964 года - в Пьерлатте, затем более производительный завод в Трикастене. С 1960 года, при помощи СССР, работал газодиффузионный завод в Китае, вблизи Ханьчжоу.

Газовые центрифуги
Машины первых поколений сменялись более современными агрегатами, но к тому моменту как в Европе запускались первые газодиффузионные заводы, в СССР уже начинался переход к принципиально иной технологии обогащения, ставшей на текущий момент основной - технологии газовых центрифуг.

Что же из себя представляет центрифуга и как она работает? Принцип простой - газ очень быстро раскручивается в центрифуге, и за счет центробежного ускорения более тяжелые молекулы будут скапливаться у периферии, а ближе к центру будет больше легких. В теории все просто. А на практике нужны огромные скорости, новые прочнейшие материалы, электродвигатели, подшипники, хитрые системы снижения трения, подвода и отвода газа, не нарушающие работу центрифуги... Короче, с самого начала атомных проектов эту идею рассматривали и у нас и в США, но на практике реализовать ее оказалось куда сложнее, чем построить атомный реактор. Поэтому в США ее отбросили, тем более что неплохо со своей задачей справлялись и диффузионные машины. А в СССР на диффузии не остановились и довели до ума немецкие идеи.

Да, именно немецкие. Это направление развивалось в СССР после войны благодаря немецким военнопленным инженерам Циппе и Штеебеку. Они работали в Лаборатории «А» в Сухуми (будущий Сухумский физико-технический институт), а затем конструкторском бюро на Кировском заводе в Ленинграде. Но идеи активно перенимали и дорабатывали (например систему отбора газа) наши специалисты, в первую очередь Виктор Сергеев. В итоге в середине 1950-х немцы вернулись в Германию (Штеебек в ГДР, Циппе в ФРГ, где затем запатентовал "русскую центрифугу"), а Сергеев довел до работоспособной конструкции и серийного запуска первые русские центрифуги в СССР. Немцы вернулись на родину, а после этого в 1957 году на УЭХК запустили сначала опытный участок, а в 1962 - первый в мире завод по обогащению урана на основе газовых центрифуг. Подробнее об истории центрифуг можно почитать тут. Ну или тут.


Устройство центрифуги. Слева схема из статьи Популярной механики. Справа - разрез центрифуги из музея УЭХК.



Вот они, каскады газовых центрифуг 6-го поколения на УЭХК в цехе 53. Каждая высотой не более метра, вращается со скоростью более 1500 об в секунду и работает так до 30 лет... Компактные размеры по сравнению с диффузионными машинами позволяют собирать их в целые секции и размещать даже в несколько ярусов в высоту. Цветные трубы - это подвод и отвод гексафторида. Желтая - исходный продукт, красная - обедненный, синяя - обогащенный.



Оптимально соединить центрифуги, как впрочем и диффузионные машины, это отдельная наука. Теория каскадов называется. В свое время над ней величайшие умы трудились, включая Нобелевских лауреатов Ричарда Фейнмана и Поля Дирака в США, Кикоина, Соболева и других в СССР.



Сотни тысяч центрифуг, собранных в многоярусные секции на протяжении почти 2 километров - это только один цех комбината №53...



А это я с коллегой Алисой Мучник на фоне каскадов. Заметьте, никаких средств защиты у нас нет, не смотря на то, что в центрифугах тот самый ядовитый гексафторид в самой подвижной газообразной форме. Просто, во-первых, конструкция центрифуги рассчитана, что даже в случае поломки и разрушения от огромной скорости ее ротора, прочный внешний корпус уцелеет. А во-вторых, в случае разгерметизации корпуса выброса ГФУ наружу не будет, а будет наоборот подсос внутрь, т.к. ротор вращается в вакууме. Фото Доната Сорокина.



Тем не менее, для контроля правильности работы этого огромного количества центрифуг на каждой установлен датчик съема параметров (оборотов в первую очередь) - черный с белым проводом на фото.

Зачем же было переходить на центрифуги? Все просто - энергопотребление центрифуги почти в 50 раз меньше, чем у диффузионной машины. И это у первых поколений. А их в СССР/России за 60 лет сменилось уже 9, и каждое новое поколение центрифуг становилось еще производительнее, экономичнее, надежнее.



Поколения газовых центрифуг и их параметры. Источник.

С 1992 года Россия закрыла последние мощности диффузионного обогащения, полностью перейдя на центрифуги. Хотя небольшая секция диффузионных машин на УЭХК осталась и работает до сих пор как фильтр для отсеивания примесей входящего продукта. Производительность центрифуг 9 поколения в 14 раз выше, чем у первого поколения, а себестоимость работы разделения в 10 раз меньше. УЭХК стал крупнейшим в мире заводом по разделению изотопов урана (20% мировых мощностей).

В принципе, лучше один раз увидеть, чем много раз прочитать. Поэтому рекомендую посмотреть видеосюжет о российских газовых центрифугах, где это наглядно показано:

https://www.youtube.com/watch?v=f7-xddfcjJs
Отмечу, что производительность устройств для обогащения измеряется в ЕРР (единицы работы разделения). Это довольно непросто вычисляемая величина, но она важна для понимания объемов рынка и производительности. Например, мощность одной отечественной центрифуги составляла около 0,4 ЕРР в год для первых поколений, и выросла до 4-8 ЕРР в год для современных устройств. А общая мощность УЭХК - более 10 млн ЕРР в год (почти 20% всех мировых мощностей обогащения).

Кстати, а сколько же энергии потребляет крупнейший в мире разделительный завод в Новоуральске? И стоит ли вообще овчинка выделки? Ответ можно найти в их годовом экологическом отчете - около 1 млрд кВт*ч в год. Т.е. средняя потребляемая мощность около 115 МВт. Кажется что это очень много, тем более что это уже с использованием наименее энергозатратных центрифуг (страшно представить потребление диффузионного завода такой же мощности). Однако надо понимать, что это крупнейший в мире подобный завод. И обогащение - это самая энергозатратная часть топливного цикла (та часть, которая отвечает за выбросы CO2 "атомного" электричества). Приняв, грубо, что он дает до 20% топлива для АЭС мира (хотя реально наверно меньше), которые вырабатывают в год 2562 ТВт*ч электроэнергии (т.е. 2 562 000 млрд кВт*ч), получаем, что ядерное топливо дает в миллионы раз больше энергии, чем надо для получения топлива. Такая вот концентрация энергии в атоме.

Немного личного
У нас на Урале расположены не только 5 из 10 закрытых "атомных" городов, в которых расположены ключевые комбинаты ядерно-топливного цикла, включая крупнейший в мире комбинат по обогащению урана - УЭХК. На Физтехе УПИ в Екатеринбурге еще и готовят специалистов-атомщиков, в т.ч. для работ по обогащению урана. Этим занимаются на кафедре технической физики (тогда молекулярной физики), которую я оканчивал. Я, правда, учился на другой специальности, и изучал ядерные реакторы. А вот моя будущая жена, и нынешний директор УЭХК Андрей Белоусов (правда на 30 лет раньше нас), учились как раз разделению изотопов. Был и у меня для ознакомления один спецкурс по теории каскадов - форма допуска, сброшюрованные тетради с конспектами, которыми можно пользоваться только в закрытой части факультета... Секретность и коммерческая тайна, как она есть. И ведь что интересно, когда студенты физтеха в начале 2000-х слушали про диффузионные машины исключительно как про часть истории, за границей на них еще вовсю обогащали уран...

А что на западе?
После "отбывания срока" в СССР в 1956 году инженер Гернот Циппе вернулся на запад, в ФРГ, где решил продолжить работы по центрифугам. Его пригласили в США, где до того так и не смогли решить ряд технических проблем устройств, а Циппе помог воссоздать наработки, сделанные в СССР. Однако американцы пошли немного другим путем. Они пытались создать более крупные и мощные единичные экземпляры центрифуг, в то время когда у нас было много более простых и надежных, пусть и менее производительных. Дело в том, что производительность центрифуги зависит от отношения ее высоты к диаметру. Русская центрифуга около 1 м в высоту и до 20 см в диаметре, американцы пытались сделать гигантов до 12 м высотой и 0,6 м в диаметре, пусть и в сотни раз производительнее российских. Однако все попытки создания американских центрифуг оборачивались провалом (модели SET I, II и II в 1985, в 2009 году) не смотря на многомиллиардные вложения, проект был свернут. До закрытия по экономическим причинам в 2013 единственный американский завод по обогащению урана в Падьюке мощностью до 5 млн ЕРР (половина УЭХК) работал по диффузионной технологии, потребляя в пике до 3000 МВт электроэнергии...


12 метровые американские центрифуги. Источник

Зато в Европе все шло гораздо лучше. Циппе вернулся туда из США, а в 1970-м была создана компания URENCO, которая собралась заниматься обогащением урана на коммерческой основе для мирных целей (т.е. в основном для топлива АЭС, а не для оружия) по центрифужной технологии на основе патента Циппе. Эти центрифуги тоже крупнее российских, но меньше американских - около 3,65 м в высоту и производительностью 40-80 ЕРР. В 1977 году URENCO открывает заводы в Нидерландах (г. Алмело) и Великобритании (г. Капенхерст), в 1985 в Германии (тот самый завод в Гронау, откуда сейчас везут ОГФУ и вокруг которого так много шума), а в 2010 открыла единственный ныне работающий обогатительный завод на территории в США, в Нью Мексико.


Завод URENCO в Гронау, Германия. Справа видна площадка с хранилищем ГФУ (и сырьем и ОГФУ). Источник.

В итоге на текущий момент URENCO - вторая после Росатома (точнее его дочерней топливной компании ТВЭЛ и экспортного Техснабэкспорта, он же TENEX) компания по мощности обогатительных заводов в мире. Обогащением также занимается Франция (завод Georges Besse, по технологии URENCO), Китай (на основе наших центрифуг) и несколько других стран, но их вклад существенно меньше:


Мировые мощности по разделению изотопов урана в тысячах ЕРР - по странам и заводам. Взято отсюда, на основе данных WNA.

Но о том когда и как мы с европейцами поделили мировой рынок обогащения, зачем ввозим их обедненный гексафторид урана к нам, как его используют в мире и у нас и является ли он отходом - в следующей части.

Надеюсь успеть написать ее и третью часть (про безопасность и протесты) до нового года.



794 просмотра  
0
 

Для отправки комментария введите свои логин и пароль, или зарегистрируйтесь на сайте
Ошибка
Логин:
Пароль:
Ссылки, начинающиеся с http:// автоматически становятся гиперссылками. Также можно использовать теги оформления
За последние сутки на сайте:
Новостей: